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For the first time, the transient hot wire (THW) and the transient hot strip
(THS) techniques were used to measure the thermal conductivity and thermal
diffusivity of ice and the thermal conductivity of liquid water simultaneously in
one run. With the additional knowledge of the thermal diffusivity of water from
a subsequent single-phase run, the latent heat of melting can be determined as
well as the time dependent position of the interface between both phases during
an experiment. The results of the dual-phase measurements are compared with
those obtained in the single-phase experiments using the same simple setup. The
composite THS and THW signals are interpreted based on the underlying phase-
change-theory of Stefan and Neumann, as outlined briefly in the text.
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1. INTRODUCTION

The transient hot strip (THS) method is well known as a fast technique to
measure simultaneously the thermal conductivity and thermal diffusivity of
solids [1]. For liquids, so far only Gustafsson et al. [2–5] and Groß et al.
[6] reported on this technique.

The state of the art for measuring both mentioned thermal transport
properties of liquids is the transient hot wire (THW) technique (cf. e.g.,
[7, 8]). This closely related method uses a wire in place of the strip as
the sensor. From this arrangement substantial advantages arise: first, the



underlying mathematical model of the (one-dimensional) wire is not as
complex as that of the (two-dimensional) strip and the corrections to it are
much better understood. Secondly, the linearized THW model enables the
isolation of nonconductive mechanisms of heat transfer such as convection.
For fluids the THW method is accepted worldwide as the most accurate
technique.

However, to set up a THW apparatus is a difficult and troublesome
task: to meet the one-dimensional model, the radius of the wire has to be as
thin as possible. It has to be maintained straight and under slight tension
but without stretching it. Moreover, a complex peripheral instrumentation
is needed for the most precise THW cells which consist of two wires of dif-
ferent lengths in a Wheatstone bridge arrangement. This circuit has to be
adjusted and operated thoroughly. By contrast, the strip of a THS experi-
ment is easy to mount within a measuring cell (cf. Fig. 2). Moreover, the
width of the strip may be chosen out of a relatively wide range up to
12 mm. The strip works properly in a simple four-wire circuit, to be con-
nected to a DVM and a constant current source only. Moreover, as Groß
et al. noted in Ref. 5, the electrical conductivity of a substance under test
may be greater by two orders of magnitude than for the THW method,
because of the strip’s larger ratio of cross section and length. From the
same geometrical reasons, the onset of convection can be significantly later
than in a THW experiment because of the smaller heat flow density at the
surface of the strip (cf. Section 3).

However, within the framework of the THS nonlinear mathematical
model, the nonlinear phenomena convection could not be detected. This
major drawback of the THS method for fluids can now be circumvented by
evaluating the THS signal by the recently developed linearized model [9]
or by a combination of this procedure with the nonlinear estimator [10].
On the basis of the linear approximation, a new experimental attempt has
been made to implement the THS method to a liquid. Water was taken as
the sample for two reasons: first, its thermal transport properties are well
known [11, 12] and, secondly, water can easily be measured in the solid
state too.

After a brief review of the THW and THS models, the present paper
deals with measurements of the thermal conductivity and thermal diffusiv-
ity of H2O at temperatures from −20 to +20°C. Composite THS and
THW signals are presented which were observed while the sample changes
its phase at the freezing point, induced by the heat liberated from the strip
or the wire. From these signals the thermal transport coefficients can be
derived simultaneously for the liquid and the solid state around 0°C.

Until now, the theory of heat conduction with progressive melting is
derived for planar, line (THW), and spherical heat sources only. To analyze
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our THS signals, a specific approximation to the line-source solution was
derived.

2. THEORY

A line or semi-infinite strip heat source of specific strength F/L=
const. is surrounded by a dielectric initially at a uniform temperature
T=T0. The resulting time dependent temperature rise at a cylindrical
surface at a distance r from the reference axis (r=0) is governed by

DT(t)=T(t)−T0=
F

2`p Ll
f(y(r, t, a)) (1)

The signal DT(t) is a measure of the thermal conductivity l and thermal
diffusivity a of the sample (e.g., Refs. 1 and 7). In a transient hot wire
(THW) and transient hot strip (THS) experiment the temperature excur-
sion T(t) is monitored in time t as the voltage drop U(T(t)) across a
current-carrying metal wire of radius r=r0 Q 0 or a strip of thickness
nQ 0 and width D,

U(T(t))=U0 11+a
U0I

2`p Ll
f(y)2 (2)

The initial voltage drop U0 is observed at time zero. a denotes the temper-
ature coefficient of the electrical resistance of the sensor (wire or strip) of
length L. f(y) specifies the shape of the signal and is called the sensor
function. For a wire, f(y) reads

f(y)=f(yr)=−
1

`4p
Ei(−y−2r ) (3)

where the nondimensional time is defined by

yr=
`4at

r0
. (4)

For a strip

f(y)=f(yD)=yD erf(y−1D )−
y2D

`4p
[1− exp(−y−2D )]−

1

`4p
Ei(−y−2D ) (5)
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is valid where

yD=
`4at

D
. (6)

Both sensor functions are nonlinear and implicit in real time t. For practi-
cal purposes (y−2° 1), first-order approximations which are linear in ln t
can be obtained. They are based on the related series expansions of Eqs. (3)
and (5). f(yr) can be expressed as

f(yr) %
1

2`p
(−c+ln y2r ). (7)

Here, c=0.5772... (Euler’s constant). In the case of the THS technique, the
quasilinear approximation,

f(yD) %
1

2`p
(3− c+ln y2D) (8)

is valid. Substitution of Eqs. (7) and (8), respectively, into Eq. (2) results in

DUW(t)=UW(t)−UW0 %
a(UW0 )

2 I
4pLl
1 ln t+ln

4a
Cr20
2=mWtŒ+nW (9)

for the THW method (superscript ‘‘W’’) and

DUS(t)=US(t)−US0 %
a(US0)

2 I
4pLl
13+ln t+ln

4a
CD2
2=mStŒ+nS. (10)

for the THS technique (superscript ‘‘S’’). Here, C=exp c. In both cases,
the expression that governs the slope of the line segment, m, takes the form
m=aU20I/(4pLl). The intercept is given with nW=mW ln(4a/(Cr20)) for a
wire and nD=mS(3+ln 4a/(CD2)) for a strip. From these coefficients both
measurands follow as

l=
aU20I
4pLm

(11)

and

a=
Cr20
4

exp 1 n
W

mW
2= r20
2.25

exp 1 n
W

mW
2 (12)
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or

a=
CD2

4
exp 1 n

S

mS
−32=D

2

45
exp 1 n

S

mS
2 (13)

The ideal model, Eq. (1) is valid for all times because of an unbounded
sample. In practice, the valid time domain of Eq. (1) is set at its lower end,
tmin, by the characteristic length of the sensor, r=r0 and r=D and at its
upper end, tmax, by the finite outer radius r=R0 of the cylindrical sample.
The available measurement time [tmin, tmax] can be located by the upper
and lower curved portions of the temperature vs. ln t graph. For small
times, all data points which deviate by more than e=0.5% from the ideal
straight line fit are discarded from all subsequent analysis. Therefore, the
lower end point is set to be yr(min)=6 for the wire [14] and yD(min)=2 for
the strip [9]. It then follows from Eqs. (4) and (6), respectively, that a
linear segment does not start in real time before

tWmin \
9r20
a

(14)

and

tSmin \
D2

a
(15)

respectively. For both techniques, the upper end point tmax is proportional
to the ratio of the square of the outer radius r=R0 to the thermal diffusiv-
ity a [15, 16]:

tmax < c
R20
a

(16)

For the THW technique, the constant c has to be chosen out of the range
0.17 < c(e) < C/4 depending on the approximation error e [15]. A finite
element analysis performed recently [16], confirms this c-range. Further-
more, as long as R0 \ 3D, the range mentioned is valid for the time tSmax of
THS signals too. Correspondingly, for both techniques, it is found, that
c=0.2 causes a deviation e=0.5%.

From a formal point of view, the working equations of the THS and
THW methods, Eqs. (9) and (10), are very closely related. Substituting the
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linearized THS-sensor function, Eq. (8), into Eq. (1), and assuming that
UW0 =U

S
0 and r0=D, one obtains for the temperature rise of the strip,

TS(t) % T0+
U0I
4pLl
13+ln t+ln

4a
CD2
2

=T0+
U0I
4pLl

ln
4at
CD2
+3

U0I
4pLl

=T0+Tc+TW(t) (17)

where Tc=const. From the right-hand side of Eq. (17) it is obvious that the
THS signal is equal to the THW signal plus the constant offset-tempera-
ture Tc. Considering a line heat source at r=0 for both techniques, the
virtual temperature station is at r=r0 for the THW method and at r=D
for the THS technique. In other words, the linearized electrical signal of the
strip may be interpreted like a THW signal that is shifted by a constant
offset voltage Uoff=3aU

2
0I/(4pLl). This effect alters the intercept n; how-

ever, it does not alter the slope m (cf. Eq. (11)).

2.1. Phase-Change Problem

Unlike steady-state techniques which operate at a constant working
temperature, TW, transient methods to determine the thermal conductivity
involve a time dependent increase in the temperature of the sample. This
temperature rise can be used to induce a phase transition of the sample
during a run while measuring its thermal transport properties l and a.

The theoretical analysis of heat conduction with progressive freezing
or melting is very difficult because of the moving interface between the
solid and the liquid phases. Here, latent heat, H, is absorbed or liberated
permanently. Stefan [17] was the first to discuss the problem of the for-
mation of ice by a planar heat sink (‘‘Stefan’s problem’’). Neumann [18]
solved this two-phase problem exactly and in closed form. For a line heat
sink of constant strength F/L, as mentioned above, a solution is given by,
e.g., Özisik [19]. His analysis of a one-dimensional transient phase-change
problem can be taken as a basis for our two-phase problem of a strip heat
source.

As has already been shown above, for a given time window [tmin, tmax],
the strip heat source acts most similar to a line source. Therefore, first,
Özisik’s heat sink solution has to be transformed to a heat source solution,
and, secondly, it has to be rearranged formally to a working equation for
THS conditions that applies to our experimental results. Hence, it is suffi-
cient here to solve the phase-change problem for the simpler arrangement
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of a line heat source as specified in Section 2. Here, T0 is signifcantly lower
than the melting temperature TM.

The solution, T(r, t), can be found by specifying the two physically
distinct parts of the system (solid, liquid) by individual Fourier field equa-
tions. Two phases are initially present:

liquid:
1
r
“

“r
1 r “TL
“r
2= 1
aL

“TL(r, t)
“t

in 0 < r < s(t), t > 0 (18)

solid:
1
r
“

“r
1 r “TS
“r
2=1
aS

“TS(r, t)
“t

in s(t) < r <., t > 0 (19)

All quantities pertaining to the liquid and to the solid are denoted by
subscripts ‘‘L’’ and ‘‘S,’’ respectively. r=s(t) is the time-dependent posi-
tion of the moving boundary (interface). Equations (18) and (19) do not
include either natural convection or heat transport by the hydrodynamic
flow of the liquid due to the difference in density between ice and water.
Both effects do not interfere significantly during the experimental runs. The
nature of the problem involves the following boundary conditions:

TS(r, t)Q T0 as rQ., t > 0 (20)

TS(r, t)=T0 as t=0, in r > 0 (21)

On the interface, temperatures of both phases are equal to the melting
temperature, TM:

TS(r, t)=TL(r, t)=TM at r=s(t), t > 0 (22)

Here, at s(t), the nonlinear heat balance can be written as

lL
“TL
“r
−lS

“TS
“r
=rH

ds(t)
dt

at r=s(t), t > 0 (23)

As mentioned, the densities of the liquid, rL, and the solid phase, rS, are
considered to be uniform, rL=rS=r. H denotes the specific latent heat
of melting which is continuously absorbed at the progressing interface.
Already in Neumann’s derivation, it is pointed out that for the solution to
satisfy the conditions for all time, this position had to be given by

s(t)=2d`aLt (24)
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where d is a proportionality constant. Equations (18) and (19) are satisfied
by

TL(r, t)=TM−
F

4pLlL
5Ei 1 − r

2

4aLt
2−Ei(−d2)6 in 0 < r < s(t) (25)

TS(r, t)=T0−
T0−TM

Ei(−d2 aLaS )
Ei 1 − r

2

4aSt
2 in s(t) < r <. (26)

The constant d can be obtained when Eqs. (25) and (26) are introduced into
the interface balance equation (Eq. (23)).

F

4pL
exp(−d2)+

lS(TM−T0)
Ei(−d2 aLaS )

exp 1 −d2 aL
aS
2=d2aLrH (27)

This transcendental relation has to be solved in graphical form. Equations
(25) and (26) reduce to their basic form, respectively, for opposite cases of
s(t):

TL(r, t)=TM−
F

4pLlL
Ei 1 − r

2

4aLt
2 in s(t)Q. (28)

because d also tends to infinity and −Ei(−d2)Q 0. Rearranging Eq. (29)
results in

C=−
(T0−TM)

Ei(−d2 aLaS )
=
d2aLrH−

F

4pL exp(−d2)
lS exp(−d2 aLaS )

(29)

For s(t)Q 0, d also vanishes. Thus, the right-hand side of Eq. (29) becomes
C=−F/(4pLlS) and Eq. (26) reduces to:

TS(r, t)=T0−
F

4pLlS
Ei 1 − r

2

4aSt
2 in s(t)Q 0 (30)

The two cases of one-phase and two-phase systems are shown in graphical
form in Fig. 1. Both parts of the curve denoted ‘‘2-phase system’’ were
calculated for the same r value.

As will be shown later (cf. Section 3), our basic experiments are
governed by Eq. (25) which is valid for the ‘‘inner range". Here, the tem-
perature station is virtually located at 0 < r=D< s(t) for the strip and
0 < r=r0 < s(t) for the wire. The boundary condition involved is given
with Eqs. (22) and (23). It is the situation of a ‘‘progressing (outer)
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Fig. 1. Calculated temperature excursion for a solid and liquid one-phase system and a two-
phase system, the latter one during phase change (see text). s(t) denotes the time-dependent
position of the phase boundary relative to the temperature station at r in cylindrical
geometry.

isothermal boundary’’ (T=TM=const.) which is continuously driven
outward by the heat flow emitted by the wire, practically as long as t [ tmax.

As has been done to Eqs. (3) and (5), Eqs. (25) may be approximated
to

TL(r, t)=TM−
F

4pLlL
5c+ln 14aLt

r2
2+d̃6 (31)

TL(t)−TM=DŒT(t) %
U0I
4pLlL
1 ln t+ln

4aL
Cr2
+d̃2 (32)

The line segment of the THW voltage signal is specified by

UW(T(t))−UW(TM) %
a(UW0 )

2 I
4pLl
1 ln t+ln

4aL
Cr20
+d̃2=mWtŒ+ñW (33)

Here, d̃=−Ei(−d2)=const. and UW(TM)=const. Slope mW and intercept
ñW are specified by mW=a(UW0 )

2 I/(4pLl) and ñW=mW(d̃+ln 4a/(Cr20)).
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Hence, the thermal conductivity l and thermal diffusivity a of the liquid
phase are then

lL=
a(UW0 )

2 I
4pLmW

(34)

aL=
Cr20
4

exp 5 ñ
W

mW
− d̃(H)6 (35)

Obviously, the determination of lL from a THW phase-change experiment
is not affected by the latent heat, H. However, in the case of the thermal
diffusivity, it is. Physically, the thermal diffusivity can be considered as the
ratio of the energy conducted to the energy stored per unit volume. While
the energy conducted, F=const., is not altered by the phase-change, the
stored energy is increased during melting because of the latent heat per unit
volume, (−rH).

Additional experiments were performed by the simultaneous use of a
second temperature station which is fixed 10 mm apart from the hot wire
or hot strip (cf. Fig. 2). This ‘‘cold wire’’ can sense within the ‘‘outer
range,’’ s(t) < r=R1 <., where the temperature TS(r, t) is governed by
Eq. (26). Here, it is the situation of a ‘‘progressing inner isothermal
boundary’’ (T=TM=const.) which is continuously driven from the center
against the cold wire. Equation (26) may be approximated to

UW(T(t))−UW0 %−
UW0 −U

W(TM)
d̂
1 ln t+ln

4aS
CR1
2=m̂WtŒ+nW (36)

provided CR1/(4aSt)° 1. It now follows for the amplitude factor
d̂=Ei(−d2 aLaS ),

d̂=
UW0 −U

W(TM)
m̂W

(37)

and for the thermal diffusivity of the solid phase,

aS=
CR1
4

exp 1 n
W

m̂W
2 (38)

So far, the phase-change problem has been solved for a line heat source.
From formal considerations, it can be shown that

US(T(t))−US(TM) %
a(US0)

2 I
4pLl
13+ln t+ln

4aL
CD2
+d̃2=mStŒ+ñS (39)
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is the approximate solution for a THS experiment which corresponds to
Eq. (33). The measurands are to be evaluated from

lL=
a(US0)

2 I
4pLmS

(40)

and

aL=
CD2

4
exp 5 ñ

S

mS
−3− d̃(H)6 (41)

3. EXPERIMENTS

The experiments were performed on the triply distilled deionized normal
water/ice system at atmospheric pressure and temperatures between − 20
and +20°C. Before measurements were initiated, the water was boiled for
several minutes to remove dissolved air from the liquid.

The sample is contained in a tubular cell made from stainless steel.
The volume change that accompanies the phase-change was accommodated
by filling the cell with water only up to the flange (e). Then, a reservoir (f )
remains for the excess of H2O during freezing. This arrangement prevents
the development of destructive pressures during freezing. The intake or
outflow of water to or from the metering region during a run is exceedingly
slow and generally does not disturb the heat transfer pattern inside.

The cell has a length of 210 mm and an inner radius R0=25 mm
(Fig. 2). (There is another cell made from plastic having the same length
but a larger inner radius of R0=45 mm. We used it to verify the upper end
time tmax and to detect the onset of convection.) Parallel to the longitudinal
axis of each tube, a platinum strip (d) of 125 mm length, 3 mm width, and
0.01 mm thickness is mounted. Optionally, a wire of the same length and
a radius r0=0.125 mm can be fixed. The current sensor is maintained
straight by four tensioning springs (stainless steel) (b) which themselves are
supported by lead-throughs (a). Each lead-through additionally acts as
a voltage or current terminal for the four-wire electrical circuit of the
sensor (single-sensor measurements). At a precisely adjusted distance of
r=r1=10 mm from the longitudinal cell axis, the ‘‘cold wire’’ (g) of radius
r0=0.125 mm can be mounted. Its purpose is to measure the temperature
at a known position between the main sensor and the container wall (dual-
sensor measurements). Both sensors are connected to their nanovoltmeter
and constant current source. The current sources also operate as measuring
devices. All four instruments are controlled by a PC. A calibrated platinum
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Fig. 2. Section through the PTB stainless steel
THS/THW cell. (a) lead-through; (b) tensioning
spring; (c) flexible potential or current lead; (d) strip
(or wire); (e) flange; (f ) excess volume (lid); (g)
‘‘cold wire.’’

resistor Pt 100 measures the working temperature to ± 0.01 K. The cell is
completely immersed in a thermostated bath that controls the fluid tem-
perature to ± 0.1 K.

The most important advantage of a hot strip instead of a hot wire as
the main sensor is its greater mechanical strength. The wire ‘‘survives,’’ at
most, three cycles of freezing, melting, and refreezing before it is broken
while the strip endures more than 20.

Beginning at time zero, a constant electrical current I out of the range
from 0.8 to 1.5 A for the wire and up to 5 A for the strip is passed through
the sensor while the voltage drop is recorded at a sampling rate of 14 s−1.

For the single-phase measurements, the current is adjusted so that the
maximum temperature rise of the strip does not exceed 2 K. For each con-
stant working temperature TW and strip/wire current I, three successive
runs were performed. Each data set, DU(ti)|I, TW , was then analyzed and the
mean value taken as the result. The evaluation of the THS data on ice
follows the linear procedure (LP) as described briefly above and in some
length in Ref. 9. A typical THS signal plot, showing the strip’s excess tem-
perature versus the natural logarithm of time (ln t), is given with Fig. 3 for
ice at − 5°C. The signal can be divided into three distinct intervals, two
outer curved ones, indicated as ‘‘S1’’ and ‘‘S3,’’ and an inner linear one,
‘‘S2.’’ The latter interval begins at t imin=D

2/aS=9/1.2=7.5 s and ends at
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Fig. 3. Typical linearized THS voltage signal for ice (see text).

t imax=0.2R
2
0/aS=0.2(45)

2=337.5 s. This segment of slope m and intercept
n is taken to evaluate the thermal transport properties l and a of the
sample from Eqs. (11) and (13). For both nonlinear segments ‘‘S1’’ and
‘‘S3,’’ the approximation, Eq. (10), does not apply. In a similar manner,
this behavior can be observed for practically any effect that is not linear in
ln t, e.g., in the case of a fluid, convection (cf. Figs. 4 and 5). In contrast to
the THS signals obtained on ice, those monitored on water had to be
analyzed by the Levenberg–Marquardt (LM) nonlinear regression proce-
dure [10] for the following reason: within the temperature range covered,
the thermal diffusivity of ice is aS % 1.2 mm2 · s−1 while for water this
transport property is smaller by one magnitude, aL % 0.1 mm2 · s−1. For the
lower and upper end points of the linear signal segment, it follows from
Eqs. (15) and (16) that for ice t imin % 7.5 s and t imax % 337 s (cf. Fig. 3)
whereas for water tWmin % 90 s and tWmax % 4000 s. The latter result is valid for
ideal conditions only, i.e., in the absence of convection. However, we
observed the onset of convection, e.g., at T=5°C at tSconv % 30 s for the
THS technique (Fig. 4). Since tconv < t

W
min, those signals cannot be analyzed

by the linear method. For the THW technique, the onset of convection
at T=5°C is at tWconv % 10 s (Fig. 5, incl. undisturbed cold wire signal).
But, here, the line segment begins earlier because r0 ° D, (cf. Eqs. (14)
and (15)).

All dual-phase runs were started on ice at a constant uniform working
temperature, TW. A constant current was fed to the sensor, large enough (a)
to induce a phase transition after at least 10 s and (b) to subsequently
produce a linear signal portion of sufficient length on water.
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Fig. 4. Linearized THS voltage signal measured on water dis-
turbed by convection for times above 30 s.

The ISO standard uncertainty of a THS measurement on dielectric
solids like, e.g., ice has recently been assessed [14]. The results differ only
slightly for the linear and the nonlinear evaluation procedures. For the
thermal conductivity the value 2uS(l)=4.8% was found while for the
thermal diffusivity 2u(a)=22% is valid. For the ISO uncertainty of the
THW method on solids, a paper is to be submitted (2uS(l)=5.2%). So far,
the THS and THW ISO uncertainties for our measurements on fluids have

Fig. 5. Linearized THW voltage signal (curve 1) measured on water
disturbed by convection for times above 10 s. Curve 2 represents the
undisturbed ‘‘cold wire’’ voltage signal obtained simultaneously. tmax
indicates the upper end of the measurement interval (see text).
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Fig. 6. Thermal conductivity of ice and liquid H 2O vs. tempera-
ture as measured by the THS method [PTB], the THW method
[12, 13], and a guarded hot plate apparatus [11].

not been assessed yet (cf. Fig. 6). As a first estimation, the above men-
tioned values can be adopted.

4. RESULTS

4.1. Single-Phase Measurements

Prior to the dual-phase measurements, single-phase runs on H2O were
performed to check the validity of our THS setup, especially for fluids.
Figures 6 and 8 represent the results on the thermal conductivity and
thermal diffusivity, respectively. Both transport properties are plotted vs.
temperature between − 20 and 20°C. Each diagram additionally shows
comparative results from the literature: Concerning the thermal conductiv-
ity, the guarded hot plate (GHP) data of Touloukian et al. [11] were addi-
tionally plotted along with the transient hot wire (THW) data of Ratcliffe
[12] and Ramirez et al. [13]. The latter claim an uncertainty of 0.5% for
their new standard reference data set on liquid H2O. Graphical comparison
is made with reference data sets in Fig. 7. For ice the maximum deviation
from our data is − 1.22%, whereas for water the departure does not exceed
0.7%. This is an excellent result regarding our above mentioned uncertain-
ties.

For the thermal diffusivity, the ISO uncertainty (2u) of our instrument
is not better than 22% for solids (error bars in Fig. 8) [11]. Accordingly,
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Fig. 7. Deviations of data sets selected (see text) from PTB THS
data (baseline) on the thermal conductivity of water (cf. Fig. 6).

our data set on ice diverges significantly from those of Touloukian et al.
[12] and James [15]. James stated an uncertainty of 7% (error bars in
Fig. 8) for his data on solid and liquid water. Nevertheless, for liquid water
a maximum deviation of 6.5% in maximum of our data from the others is
fairly good for a thermal diffusivity data set originating from THS mea-
surements.

Fig. 8. Thermal diffusivity of ice and liquid H2O vs. temperature
as measured by the THS method [PTB], the THW [11], and the
Angström methods [20] (see text).
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4.2. Dual-Phase Measurements

As has been outlined first in Ref. 9, the linearized THS method is
capable of measuring the thermal transport properties of composite media
consisting of two layers having an interface at a fixed position but with a
transient temperature. A two-phase system like water and ice can also be
treated as a composite media; however, here the interface has a fixed tem-
perature but it moves. It is that characteristic of a two-phase composite
media that allows a solution of the underlying differential equation in
closed form (cf. Section 2.1.).

Water has been taken as the sample fluid for the reasons oulined in
Section 1. Furthermore, for these first experiments, it was very important
to select a substance of only slightly varying thermal transport properties
over the range (−5 [ TM/°C [ 15). Dual-phase measurements were carried
out using the THS method in single-sensor mode, (dual-sensor mode THS
experiments are planned) and the THW technique in dual-sensor mode (hot
and cold wires).

A typical composite THS signal is shown in Fig. 9. Figure 12 repre-
sents a typical THW signal where the cold wire signal is additionally
plotted (dual-sensor measurement).

For the THS signal (Fig. 9), the working temperature is − 3°C and the
constant current I fed to the strip is 5 A. This combination leads, after 13 s
of heating the ice (linear segment: ‘‘L1’’), to a maximum excess temperature
of the strip just at the transition temperature. Now, melting of the sample
is initiated from the hottest part of the strip, its center, and propagates up

Fig. 9. Composite THS temperature signal for a solid-liquid
phase transition of water. ‘‘L1’’ and ‘‘L2’’ are linear fits while
‘‘P’’ is a quadratic polynomial fit (cf. Fig. 12).
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and downwards along the longitudinal axis of the strip and to its edges.
At the latest, at tL(min)=180 s, the strip is completely immersed within a
cylinder of water of radius r % D. At this fictitious nondimensional time
yf=2 (cf. Section 4.2.1 for ‘‘melt-lag’’), the second linear segment (‘‘L2’’)
commences. It does not end before the thermal wave front reaches the
container walls. The signal segment between the two linear portions ‘‘L1’’
and ‘‘L2’’ can precisely be expressed in terms of a polynomial of second
degree in time (‘‘P’’).

By playing with the working temperature and/or the electric current
I3 F, fed to the sensor, one can perform THS and THW experiments in
which the heat liberated by the current sensor induces and maintains
melting of the ice or another material. For ice, this has been done for dif-
ferent combinations of temperature and/or current (Fig. 10).

4.2.1. Evaluation of Single-Sensor Signals

To illustrate the analysis of a composite THS/THW single-sensor
signal on H2O, Fig. 11 was calculated using the theory as outlined above.
The dashed curve (denoted ‘‘water’’), starting at TW=0°C, indicates the
signal of a single-phase measurement on water, Eq. (2). The signal of
the same measurement on a solid substance like ice (but having no phase
transition) is represented with the solid/dotted curve (denoted ‘‘ICE’’ and
‘‘ICE cont.’’), starting at TW=−5°C, Eq. (2).

The dotted/solid curve, starting at TW=−1.8°C, (denoted ‘‘ice-water
(cont.),’’ and ‘‘ice-water’’) shows the signal of a two-phase measurement on
H2O where the solid, Eq. (26), and the liquid, Eq. (25), phases are initially

Fig. 10. Composite THS temperature signals measured with
different electric currents fed to the strip. Curves 1 · · · 5 are
obtained for solid-liquid phase transitions of water.
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Fig. 11. Calculated temperature vs. time curves for different
phase conditions of water during a phase change experiment (see
text).

present. The solid/solid curve indicates a typical signal to be observed in
our measurements starting at, e.g., TW=−5°C. At this temperature, only
one phase of H2O is initially present. Hence, the signal, denoted ‘‘ICE,’’ is
monitored first, Eq. (2). It exists as long as the sensor temperature does not
approach T(t)=0°C. This case is identical to the limit s(t)Q 0, Eq. (30).
From the slope and intercept of the straight line (THS signal ‘‘L1’’ in
Fig. 9, THW signal ‘‘L1a’’ in Fig. (12)), lS and aS of ice can be calculated.

Fig. 12. Composite THW voltage signal for a solid-liquid phase
transition of water (curve 1). Curve 2 represents the ‘‘cold wire’’
voltage signal monitored simultaneously (see text).
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With the start of melting, the signal, denoted ‘‘ice-water’’ is observed.
Now, two phases are concurrently present, the temperature profile within
the liquid phase, TL is established beginning at TM. The interface is located
at r=s(t) > r0 for a THW and r=s(t) > D for a THS experiment. Hence,
after a transformation in time by the melt-lag Dt (cf., e.g., Figs. 9 and 12),
the temperature of the sensor, T(r0, t−Dt), is specified by Eq. (25). Dt is
the period to account for the time required to form a film of water around
the sensor. From the slope of the straight line (THS signal ‘‘L2’’ in Fig. 9,
THW signal ‘‘L1b’’ in Fig. 12), lL of water can be calculated. The thermal
diffusivity aL of water can only be derived from the intercept of the lines
mentioned when the latent heat is known. Or, vice versa, the latent heat of
melting can be calculated with the knowledge of aL.

4.2.2. Evaluation of Dual-Sensor Signals

In the single-sensor experiments only the cases s(t)Q 0 and
0 < r < s(t) (cf. Fig. 1) can be observed. In order to monitor all five cases
mentioned above (cf. Section 2.1), a second temperature sensor, the ‘‘cold
wire’’ was used at r=r1 in conjunction with the hot wire. Now, the missing
situations s(t) < r <., s(t)Q., and s(t)=r1 (cf. Fig. 1) can be realized
too. The cold wire signal of a bounded sample (radius R0) is practically
limited in time by the same restriction as the hot wire signal, Eq. (16):
tmax < uR

2
0/a. However, there is a certain delay in time depending on the

mutual distance of both wires, r1. This propagation delay, Dt1–2=
t2max−t1max, can be derived as, e.g., Dt1–2=581 s−373 s=208 s from Fig. 12.

The first of the above mentioned cases, s(t)Q 0, is valid for ice. From
the slope and intercept, lS and aS can be determined. This case is repre-
sented in Fig. 12, curve 2 and Fig. 13, curve 1. The latter diagram compri-
ses all three typical cold wire signals, obtained from three different runs.

The fifth situation, the other limiting case s(t)Q., is shown in
Fig. 13, curve 3. Here, the transport properties of water can be derived
from the signal.

The second and third cases, 0 < r < s(t), s(t) < r <., respectively, can
be seen from Fig. 13, curve 2a and curve 2c, respectively. Curve 2b is asso-
ciated with the phase transition, s(t)=r1, the fourth case. Surprisingly, in
contrast to the THS signals, the THW signals of the hot and the cold wires
show a ‘‘step’’ (Figs. 12 and 13: dotted rectangles) at the phase transition
temperature. This characteristic behavior is not completely understood yet.

4.2.3. Results

The single-phase experiments demonstrate that a simple THS instru-
ment can be applied to measure the thermal conductivity not only of solids
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Fig. 13. ‘‘Cold wire’’ voltage signals from three different runs
(1, 2, and 3) on the solid-liquid phase transition of water (see text).

but also of fluids. The uncertainty compares to THW instruments which,
however, are much more complicated to set up and to operate. The onset
of convection is later for a THS than for a THW instrument, providing the
same experimental conditions.

As a first result of the dual-phase experiments using both transient
techniques mentioned, the thermal transport properties lS and aS for ice
and lL for water can be obtained from one single run. These values differ
only slightly (±1%) from those furnished by the single-phase experiments.
With the additional knowledge of aL the volumetric latent heat of melting,
rH, of H2O and the constant d for the actual experiment can be calculated.
For H we found 300 kJ · kg−1 which is a fairly good value ([11]: 333
kJ · kg−1). For, e.g., the THS signal depicted in Fig. 9, d is determined to be
0.48. From this value, the time dependent position of the interface, s(t),
between the two phases can be calculated.

A second result of the dual-phase measurements is that the results are
in complete agreement with the underlying theory.

5. SUMMARY

For the first time composite THW and THS signals have been
observed which are monitored while the sample, H2O, undergoes a phase
transition from the solid to the liquid state. The apparatus used for these
investigations is straightforward and simple to operate. Concerning the
measured thermal conductivities of both phases, the results are in excellent
agreement with those from the literature. The value obtained for the latent
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heat is fairly good. However, until now, THS is not the method of choice
to precisely measure the thermal diffusivity of fluids.

It has been shown, that such experimental investigations can generally
provide useful information for a lot of engineering applications like the
melting of frozen food, thermal energy storage, or casting and welding of
plastics.
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